Uptake of fentanyl in pulmonary endothelium.
نویسندگان
چکیده
Fentanyl is a basic amine shown to have extensive first-pass pulmonary uptake. To evaluate the role of the pulmonary endothelium in this uptake process, the simultaneous pharmacokinetics of [3H]fentanyl and two marker drugs, blue dextran, and [14C]antipyrine, were evaluated in a flow-through system of pulmonary endothelial cells. Fentanyl equilibrium kinetics were determined in a static culture system. The flow-through system consisted of monolayers of bovine pulmonary artery endothelial cells cultured on solid microcarrier beads placed in a chromatography column and perfused at 1.0 ml/min (37 degreesC). Fentanyl and the markers were injected into the perfusate at the top of the column and samples were collected from the eluate at 9-s intervals for 10 min. The pharmacokinetic analyses were based on determinations of mean transit time and flow. Fentanyl was partitioned into the pulmonary endothelial cells 60 times more than the tissue water space marker antipyrine. In the static system, monolayers of bovine pulmonary artery endothelial cells were cultured in 3.8-cm2 wells to which were added 0 to 946 micromol (0-500 microgram/ml) of unlabeled fentanyl citrate and 0.14 micromol of [3H]fentanyl. After a 10-min incubation, solubilized cells were assayed for [3H]fentanyl. Pulmonary endothelial cells contained a higher relative fentanyl concentration at lower fentanyl supernatant concentrations than would be expected if uptake occurred by diffusion alone. These observations can be explained with a model of fentanyl uptake that includes both passive diffusion and saturable active uptake. This suggests that the extensive first-pass pulmonary uptake of fentanyl observed in vivo is due largely to vascular endothelial drug uptake by both a passive and a saturable active uptake process.
منابع مشابه
Facilitated uptake of fentanyl, but not alfentanil, by human pulmonary endothelial cells.
BACKGROUND Extensive pulmonary uptake of lipophilic basic amines, such as fentanyl, attenuates early blood drug concentrations after rapid intravenous administration. The basis of this phenomenon is poorly understood. The authors tested the hypothesis that fentanyl uptake into cultured human lung microvascular endothelial (HMVE-L) cells occurs by facilitated uptake in addition to passive diffus...
متن کاملActive transport of fentanyl by the blood-brain barrier.
Previous studies have shown that uptake of the lipophilic opioid, fentanyl, by pulmonary endothelial cells occurs by both passive diffusion and carrier-mediated processes. To evaluate if the latter mechanism also exists in brain endothelium, transport of [3H]fentanyl was examined in primary cultured bovine brain microvessel endothelial cell (BBMEC) monolayers. Uptake of fentanyl appears to occu...
متن کاملActive Transport of Fentanyl by the Blood-Brain Barrier1
Previous studies have shown that uptake of the lipophilic opioid, fentanyl, by pulmonary endothelial cells occurs by both passive diffusion and carrier-mediated processes. To evaluate if the latter mechanism also exists in brain endothelium, transport of [H]fentanyl was examined in primary cultured bovine brain microvessel endothelial cell (BBMEC) monolayers. Uptake of fentanyl appears to occur...
متن کاملComparison of Fentanyl and Midazolam for the Sedation of Infants Under Mechanical Ventilation; A Randomized Clinical Trial
Background: Neonatal respiratory distress syndrome (NRDS), a life-threatening pulmonary disorder, involves 1% of all deliveries worldwide. Shallow breathing causes restlessness in infants, which itself affects pulmonary function; thus, sedative medications are used to preserve better pulmonary function. There are different opinions about the benefits and superiority of these dr...
متن کاملThe Possible Involvement of Nitric Oxide/Endothelium Derived Relaxing Factor in Atropine-Induced Vasorelaxation
Atropine has been used to block cholinergic neurotransmission in basic research. Large doses of atropine cause vasodilation of the blood vessels in the skin. This effect is apparently unconnected with the antimuscarinic activity of atropine and seems to be due to a direct action on the blood vessels. It has been suggested that atropine blocks muscarinic receptors at low doses and it induces th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 288 1 شماره
صفحات -
تاریخ انتشار 1999